Fractais (do latim fractus, fração, quebrado) são figuras da geometriaA geometria fractal é o ramo da matemática que estuda as propriedades e comportamento dos fractais. Descreve muitas situações que não podem ser explicadas facilmente pela geometria clássica, e foram aplicadas em ciência, tecnologia e arte gerada por computador. As raízes conceituais dos fractais remontam a tentativas de medir o tamanho de objetos para os quais as definições tradicionais baseadas na geometria euclidiana falham.
não-Euclidiana.
Um fractal (anteriormente conhecido como curva monstro) é um objeto geométrico que pode ser dividido em partes, cada uma das quais semelhante ao objeto original. Diz-se que os fractais têm infinitos detalhes, são geralmente autossimilares e independem de escala. Em muitos casos um fractal pode ser gerado por um padrão repetido, tipicamente um processo recorrente ou iterativo.
O termo foi criado em 1975 por Benoît Mandelbrot, matemático francês nascido na Polónia, que descobriu a geometria fractal na década de 1970 do século XX, a partir do adjetivo latino fractus, do verbo frangere, que significa quebrar.
Vários tipos de fractais foram originalmente estudados como objetos matemáticos.
História
Durante séculos, os objetos e os conceitos da filosofia e da geometria euclidiana foram considerados como os que melhor descreviam o mundo em que vivemos. A descoberta de geometrias não-euclidianas introduziu novos objetos que representam certos fenômenos do Universo, tal como se passou com os fractais. Assim, considera-se hoje que tais objetos retratam formas e fenômenos da Natureza.
A idéia dos fractais teve a sua origem no trabalho de alguns cientistas entre 1857 e 1913. Esse trabalho deu a conhecer alguns objetos, catalogados como "demônios", que se supunha não terem grande valor científico.
Em 1872, Karl Weierstrass encontrou o exemplo de uma função com a propriedade de ser contínua em todo seu domínio, mas em nenhuma parte diferenciável. O gráfico desta função é chamado atualmente de fractal. Em 1904, Helge von Koch, não satisfeito com a definição muito abstrata e analítica de Weierstrass, deu uma definição mais geométrica de uma função similar, atualmente conhecida como Koch snowflake (ou floco de neve de Koch), que é o resultado de infinitas adições de triângulos ao perímetro de um triângulo inicial. Cada vez que novos triângulos são adicionados, o perímetro cresce, e fatalmente se aproxima do infinito. Dessa maneira, o fractal abrange uma área finita dentro de um perímetro infinito.
Também houve muitos outros trabalhos relacionados a estas figuras, mas esta ciência só conseguiu se desenvolver plenamente a partir da década de 1960, com o auxílio da computação. Um dos pioneiros a usar esta técnica foi Benoît Mandelbrot, um matemático que já vinha estudando tais figuras. Mandelbrot foi responsável por criar o termo fractal, e responsável pela descoberta de um dos fractais mais conhecidos, o conjunto de Mandelbrot.
Categorias de Fractais
Os fractais podem ser agrupados em três categorias principais. Estas categorias são determinadas pelo modo como o fractal é formado ou gerado:
- Sistema de funções iteradas — Estas possuem uma regra fixa de substituição geométrica.
- Conjunto de Cantor, tapete de Sierpinski, Sierpinski gasket, curva de Peano, floco de neve de Koch, curva do dragão de Harter-Heighway, T-Square, esponja de Menger, são alguns exemplos deste tipo de fractal.
- Fractais definidos por uma relação de recorrência em cada ponto do espaço (tal como o plano complexo).
- Exemplos deste tipo são o conjunto de Mandelbrot e o fractal de Lyapunov.
- Estes também são chamados de fractais de fuga do tempo.
- Fractais aleatórios, gerados por processos estocásticos ao invés de determinísticos, por exemplo, terrenos fractais e o vôo de Lévy.
Ainda, também podem ser classificados de acordo com sua autossimilaridade. Existem três tipos de autossimilaridade encontrados em fractais:
- Autossimilaridade exata: é a forma em que a autossimilaridade é mais marcante, evidente. O fractal é idêntico em diferentes escalas. Fractais gerados por sistemas de funções iterativas geralmente apresentam uma autossimilaridade exata.
- Quase-autossimilaridade: é uma forma mais solta de autossimilaridade. O fractal aparenta ser aproximadamente (mas não exatamente) idêntico em escalas diferentes. Fractais quase-autossimilares contém pequenas cópias do fractal inteiro de maneira distorcida ou degenerada. Fractais definidos por relações de recorrência são geralmente quase-autossimilares, mas não exatamente autossimilares.
- Autossimilaridade estatística: é a forma menos evidente de autossimilaridade. O fractal possui medidas númericas ou estatísticas que são preservadas em diferentes escalas. As definições de fractais geralmente implicam alguma forma de autossimilaridade estatística (mesmo a dimensão fractal é uma medida numérica preservada em diferentes escalas). Fractais aleatórios são exemplos de fractais que possuem autossimilaridade estatística, mas não são exatamente nem quase autossimilares.
Pelo fato do fractal possuir uma granulometria infinita, nenhum objeto natural pode sê-lo. Os objetos naturais podem exibir uma estrutura semelhante ao fractal, porém com uma estrutura de tamanho limitado.
Definições
Os fractais podem ser definidos segundo algumas características intuitivas, pois se torna difícil a conversão da definição matemática para a linguagem ordinária devido à falta de termos adequados à sua tradução.
Mandelbrot definiu fractal como "um sistema organizado para o qual a dimensão de Hausdorff-Besicovitch excede estritamente a dimensão topológica (número inteiro que caracteriza a geometria de um objeto euclidiano – por exemplo: zero para um ponto, um para uma linha, etc.), onde fractais cujas estruturas sejam ego-semelhantes, ou a dimensão de Hausdorff é igual a dimensão de Minkowski-Bouligand. Simplificando, o todo forma a parte e a parte forma o todo.
Na definição de fractal, os problemas de linguagem incluem:
Exemplos* Não há nenhum significado preciso para o termo "muito irregular".
* Quando
se diz "dimensão", pode haver dúvida na definição do conceito, pois o termo pode
ter diversos significados (por exemplo: "tamanho", "importância, -no sentido de
valor-", "ordem de matrizes na representação matricial de um grupo", "grau",
"num espaço vetorial, o número de vetores de sua base", "num espaço, o número
mínimo de coordenadas necessárias à determinação unívoca de seus pontos", etc.).
Porém no caso dos fractais, dimensão significa estritamente o "número
fracionário ou irracional que caracteriza a geometria de um fractal.".
* Há
muitos modos que um objeto pode ser ego-semelhante. Pode-se tentar explicar como
uma espécie de fractais "irmãos gêmeos idênticos", onde existe a igualdade na
semelhança física, porém suas ‘personalidades’ são diferentes". Isto ocorre
quando inicialmente as curvas são alimentadas pelos mesmos dados, mas em
determinado momento, há um desvio nos valores dos dados, por exemplo, quando
observamos dois fractais numa escala 1:1, estes têm exatamente a mesma
aparência, mas se os observarmos numa dimensão 1:1.000.000, as figuras
observadas são completamente diferentes.
* Nem todo fractal possui
repetitividade, dependendo dos dados inseridos (principalmente no domínio do
tempo) este não terá em escalas menores a mesma aparência, aparecendo distorções
da figura.
Árvores e samambaias (ou fetos) são fractais naturais que podem ser modelados em computadores que usam algoritmos recursivos. Esta propriedade de recursividade ou repetitividade está clara nestes exemplos: num ramo de uma árvore ou na folhagem de uma samambaia pode ser observada uma réplica - não idêntica, porém semelhante na estrutura - em miniatura do todo .
Uma classe relativamente simples de exemplos é o Cantor que, observado num intervalo (digamos 1:1) e então noutro (1:10) mais curto (ou aberto), visto numa escala de 0, 1, é uma figura que pode ser (ou não ser) "ego-semelhante" em determinada amplificação, e pode (ou não) ter uma dimensão d ou 0 <>
Por exemplo, uma forma euclidiana normal - como um círculo - parece mais aplainada e alisada quando é amplificada. Numa ampliação infinita, seria impossível se diferenciar o círculo de uma linha reta. No caso dos fractais, isto não acontece (embora, também neste caso, quanto mais amplificarmos, mais nos aproximamos da linha reta) em razão da perda de dados ao longo de múltiplas amplificações (desvios acontecem pela imprecisão das inserções seqüenciais dos dados).
A idéia convencional de curvatura representada pela reciprocidade radial (em radianos) num círculo por aproximação, usualmente não pode ser aplicada em escalas muito grandes, pois o "raio" de curvatura fica fora de escala - daí a "aparência" de uma linha reta.
Com os fractais ocore o contrário: ao se aumentar a amplificação, revelam-se mais e mais os detalhes - a depender do grau de precisão e da quantidade de casas decimais dos dados inseridos. As distorções tendendo para a linha reta ocorrem justamente pelo fato de haver "falta de memória" nas máquinas que executam o cálculo. Portanto, um fractal jamais alcançará uma linha reta, salvo quando a fórmula que o constitui assim o permitir.
Alguns exemplos comuns de fractais:
Conjunto de Mandelbrot
Fractal de Lyapunov
Conjunto de Precentor
Tapete de Sierpinski
Triângulo de Sierpinski
Menger sponge
Curva de dragão
Curva de Peano
Curva de Koch
Os Fractais podem ser determinísticos ou estocásticos (Ver George G. Stokes).
No caso da Teoria do Caos, podemos associá-la totalmente aos fractais; também no conhecido "Mandelbrot set" Conjunto de Mandelbrot podemos observar discos inteiros, cuja dimensão é 2.
Isto não é de surpreender. O que é verdadeiramente surpreendente é que o limite do conjunto Mandelbrot também tem uma dimensão de Hausdorff de 2.
Aproximações de fractais (Fractais naturais) são encontradas freqüentemente na natureza. Estes objetos exibem uma estrutura complexa próxima aos objetos matemáticos, porém finitas, se as observarmos em escalas maiores.
Os fractais naturais estão à nossa volta, basta observarmos as nuvens, as montanhas, os rios e seus afluentes, os sistemas de vasos sanguíneos, os feixes nervosos, etc. Com maiores ou menores graus, estas figuras estão classificadas em diversas magnitudes.
Apesar de existirem por toda a natureza e de serem onipresentes, estes objetos somente foram realmente estudados a fundo no século XX.
Harrison [1] estendeu o cálculo Newtoniano para o domínio fractal, também inseriu os teoremas Gauss da divergência, o Teorema de Green, e o Teorema de Stoke.
Os Fractais são normalmente gerados através de computadores com softwares específicos. Através de seu estudo podemos descrever muitos objetos extremamente irregulares do mundo real. Como exemplo de softwares temos o Xaos -http://xaos.sourceforge.net/index.php.
Os meteorologistas utilizam o cálculo fractal para verificar as turbulências da atmosfera incluindo dados como nuvens, montanhas, a própria turbulência, os litorais, e árvores. As técnicas fractais também estão sendo empregadas para a compactação de imagens através da compressão fractal, além das mais diversas disciplinas científicas que utilizam o processo.
Montanhas Fractais
A superfície de uma montanha pode ser modelada num computador usando uma fractal: começamos com um triângulo no espaço 3D. Acham-se os pontos centrais das 3 linhas que formam o triângulo e criam-se 4 novos triângulos a partir desse triângulo. Deslocam-se depois aleatoriamente esses pontos centrais para cima ou para baixo dentro de uma gama de valores estabelecido. Vai-se repetindo o mesmo procedimento mas fazendo os deslocamentos dos pontos centrais dentro de uma gama de valores que em cada iteração é igual a metade da anterior.
0 comentários:
Postar um comentário